Department of Information Technology B.Tech VII semester

(Professional Elective-VI)

Course Details:

COURSE TITLE	Multi core Programming
COURSE CODE	15CT1138
PROGRAM	B.TECH
SPECIALIZATION	IT
PRE REQUISITES	NIL

Course Outcomes (COs):

CO No.	Course outcomes
CO1	Describe Multi-Core processor Architecture
CO2	Discuss multi core processors
CO3	Discuss Parallel Programming Concepts
CO4	Differentiate Threading API's
CO5	Use OpenMP programming and MPI programming

Course Outcome-PO matrix

Subject: Middleware Technologies

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2			2			2				
CO-2	2	2			3							
CO-3	2		2		2			3				
CO-4	2											
CO-5	2				2		2					

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching- Learning & Evaluation

Week	Topic / Contents	Course Outcomes	Sample Questions	Teaching Learning Strategy	Assessment method and Schedule
1	Unit-1: Parallel Computing Platforms (SIMD & MIMD systems, an overview of Single-Core, Multi Processor,Multi-Core Architectures),	CO1	 Differentiate SIMD and MIMD systems. Define the term "Multi core <i>Architecture</i>" 	Lecture	Assignment-1, Test- 1 Quiz-1

2	Parallel Computing in Microprocessors, Differentiating Multi-Core Architectures from Hyper Threading Technology	CO1	 Write short notes on micro processors. Explain Hyper Threading Technology 	Lecture	Assignment-1, Test- 1 Quiz-1
3	Multi-threading on Single-Core versus Multi Core Platforms, Understanding Performance, Amdahl's Law, Gustafson's Law	CO1	1.Differentiate Multi- threading on Single- Core versus Multi Core Platforms	Lecture	Assignment-1, Test- 1 Quiz-1
4	Unit-2: An Overview of Software Threading Defining Threads, System View of Threads: Threading above the Operating System, Threads inside the OS, Threads inside the Hardware	CO2	 What is Software Threading What is the role of threads inside the Hardware 	Lecture	Assignment-1, Test- 1 Quiz-1
5	Application Programming Models and Threading, Virtual Environment: Virtual Machines and Platforms, Runtime Virtualization, System Virtualization	CO2	 Explain Virtualization, Write about Runtime Virtualization 	Lecture	Assignment-1, Test- 1 Quiz-1
6	UNIT-3: Designing for threads, parallel programming patterns	CO3	1. parallel programming patterns	Lecture	Assignment-1, Test- 1 Quiz-1
7	Threading and parallel programming constructs: Synchronization,	CO3	1.Explain Synchronization,.	Lecture	Assignment-1, Test- 1 Quiz-1
8	Test1	CO1,CO2 and CO3			
10	Critical sections, Deadlock, Synchronization Primitives, and Messages	CO3	1.Differentiate between Critical sections and Deadlock	Lecture	Assignment -2, Test - 2 Quiz - 2
11	UNIT-4: Threading APIs for Microsoft Windows, Threading APIs for Microsoft.NET Framework: Creating Threads, Managing Threads, Thread Pools, Thread Synchronization,	CO4	1. What Framework 2. How are threads managed?	Lecture	Assignment -2, Test - 2 Quiz - 2
12	POSIX Threads: Creating Threads, Managing Threads, Thread Synchronization, Signaling, Compilation and Linking.	CO4	 What are POSIX Threads Explain Signaling, Compilation and Linking. 	Lecture	Assignment -2, Test - 2 Quiz - 2
13	UNIT-5: OPENMP PROGRAMMING: Open MP Challenges in threading a loop, Minimizing Threading overhead, Performance oriented Programming, Library Functions. Solutions to parallel programming problems:	CO5	What are Open MP Challenges in threading a loop, Write a short notes on Performance oriented Programming	Lecture	Assignment -2, Test - 2 Quiz - 2

	Data races, deadlocks and Live locks Non-blocking algorithms, Memory and cache related issues.				
14	MPI PROGRAMMING: Message- Passing Model, Message-Passing Interface, MPI functions, Compiling and running MPI Programs, collective communication, data decomposition, Point-to-point communication – MPI Library	CO5	1.What is collective communication, and data decomposition.	Lecture	Assignment -2, Test - 2 Quiz - 2
15	Test2	CO3, CO4 and CO5			